L'Oxyde Double TeVO₄ I. Synthèse et Polymorphisme, Structure Cristalline de α -TeVO₄

GEORGES MEUNIER, JACQUES DARRIET, ET JEAN GALY

Service de Chimie minérale structurale de l'Université de Bordeaux I, associé au C.N.R.S., 351 cours de la Libération, 33 Talence, France

Received November 15, 1971

TeVO₄ has been prepared in two different crystalline forms with a reversible polymorphic transformation at 650°C ($\alpha \rightleftharpoons \beta$). Both crystallize in the monoclinic system, space group $P2_1/c$. By quenching a melt of TeVO₄ a black glass is obtained, γ -TeVO₄.

In the low-temperature α -TeVO₄ crystal structure, isolated $[VO_4]_n^{n-}$ chains parallel to the *b* axis are formed by regular VO₆ octahedra sharing edges. These chains are linked by tellurium(+IV) atoms which have a one-side coordination of three oxygens in a triangle.

Depuis quelques années un travail d'ensemble est entrepris au laboratoire sur les composés oxygénés du tellure(+IV) afin d'en établir une systématique, les travaux antérieurs dans ce domaine étant très fragmentaires. Plusieurs systèmes dans lesquels interviennent l'oxyde TeO₂ et des oxydes MO, M₂O₃, MO₂, M₂O₅ ou MO₃ ont été étudiés sur les plans chimiques et cristallographiques (1-7)

Dans les systèmes TeO_2-MO_2 ou M est le titane, l'étain, le zirconium et le hafnium, une phase originale de formule MTe_3O_8 a été mise en évidence et sa structure précisée (4). Ce travail a été étendu au système formé par la paratellurite TeO_2 et l'oxyde de vanadium(+IV), VO_2 .

Etude Chimique du Systeme TeO₂-VO₂

Une seule phase, correspondant au rapport molaire $TeO_2/VO_2 = 1$, a été mise en évidence. Cette phase de formule $TeVO_4$ a été préparée à partir de mélanges en quantités stoechiométriques d'oxydes TeO_2 et VO_2 finement pulvérisés:

$$\text{TeO}_2 + \text{VO}_2 \rightarrow \text{TeVO}_4.$$

On opérait en tube scellé de vycor afin d'éviter l'oxydation à l'air du vanadium(+IV) en vanadium(+V). Deux traitements thermiques de 12 hr séparés par un broyage étaient effectués à 600°C. La paratellurite de départ est un produit commercial.

Copyright © 1972 by Academic Press, Inc. All rights of reproduction in any form reserved. L'oxyde VO₂ était obtenu à 850° C, sous courant d'azote *R* désoxygéné, par interaction de quantités stoechiométriques d'anhydride vanadique V₂O₅ et de sesquioxyde V₂O₃. V₂O₃ était préparé par réduction de V₂O₅ sous courant d'hydrogène à 800°C.

 $TeVO_4$ préparé dans ces conditions se présente sous forme d'une poudre noire bien cristallisée. Son spectre X de poudre est consigné au Tableau I.

Remarque. Notons que la montée en température, du mélange $VO_2 + TeO_2$ ne doit pas être trop brutale pour éviter un phénomène d'oxydo-réduction avec dépôt de tellure métallique sur la paroi froide du tube selon le schéma:

$$4\text{TeO}_2 + 8\text{VO}_2 \rightarrow 3\text{V}_2\text{O}_5 + \text{Te}_2\text{V}_2\text{O}_9 + 2\text{Te}^2$$
.

Un phénomène analogue a déjà été mis en évidence lors de l'étude du système UO_2 -Te O_2 (5). Les caractéristiques cristallographiques de l'oxyde double Te₂V₂O₉ ont été précisées dans une Note antérieure (3).

Polymorphisme

L'étude par analyse thermique différentielle de la phase TeVO₄ a révélé la présence d'une transformation endothermique vers 650° C; ce phénomène est réversible. Nous avons reproduit à la figure 1 la courbe différentielle obtenue pour

TABLEAU I

Indexation du Spectre X de Poudre de α -TeVO₄

hkl	d_{obs}	d _{cate}	I/I_0	h k l	d _{obs}	d_{calc}	<i>I</i> / <i>I</i> ₀	hkl	dobs	d _{calc}	<i>I</i> / <i>I</i> ₀	h k l	dobs	d _{calc}	<i>I</i> / <i>I</i> ₀
0 1 T	4.57	4.57	2	022	2.286	2.287	2	011	5.05	5.05	10	200	2.188	2.188	2
012	3.834	3.835	15	12I	2.217	2.217	<2	100	4.38	4.38	100	1 2 2	2 161	(2.161	8
111	3.528	3.530	20	121	2.214	2.214	<2	021	4.24	4.24	7	210)	2.101	2.160	0
110	3.477	3.478	100	114	2.100	2.100	10	110	4.16	4.16	15	15Ī	2.129	2,129	4
102	3.394	3.395	30	202	2.086	2.086	8	120	3.675	3.672	9	061)	2 078	(2.080	0
112	3,309	3.310	40	123	2.045	2.045	<2	040	3.376	3.375	70	132)	2.070	2.078	0
111	3.185	3.186	5	214)	2 0 2 2	(2.033	20	111	3.356	3.354	40	132	2.033	2.034	10
013	3.136	3.137	12	006	2.032	12.032	20	121	3.081	3.081	15	21 T	2.029	2.029	10
004	3.046	3.048	5	212	1.922	1.922	25	121	3.011	3.009	45	2 2 Ī	1.964	1.963	8
104	2.978	2.979	40	124	1.900	1.900	12	041	2.868	2.869	12	221	1.928	1.926	4
113	2.938	2.939	<2	123	1.845	1.845	6	13Ī	2.743	2.744	10	052	1.917	1.917	8
014	2.592	2.593	30	2 2 Ī	1.770	1.770	5	140	2.674	2.673	20	161	1.870	1.870	10
114	2.549	2.550	6	222)	1 7/5	(1.765	1.5	012	2.669	2.668	20	240)	1 9 2 7	(1.836	6
2 O 2	2.526	2.527	15	213)	1./03	1.760	15	051)	2 110	<i>(</i> 2.419	2	231)	1.057	1.835	0
020	2.466	2.467	8	125	1.745	1.745	2	14Ī∫	2.717	2.417	5	170	1.766	1.765	<2
200	2.452	2.452	6	220	1.739	1.739	<2	032	2.327	2.329	4	212	1.717	1.717	<2
1 1 3)	2 410	(2.421	1.5	223	1.724	1.724	2	112	2.307	2.309	<2	0.3.3)		(1.683	
02Ī)	2.419	2.418	15	216	1.715	1.715	15	102	2.281	2.281	<2	202	1.682	1.681	<2
104	2.319	2.320	5	124	1.690	1.690	5	060	2 250	(2.250	-2	113)		(1.681	
								112)	2.230	2.249	~4				

une montée en température de 150°C/hr. Les pics A et D correspondent à la transformation réversible, les pics B et C à la fusion et à la solidification ($t_F = 710$ °C ± 10 °C).

Par trempe énergique de TeVO₄, préalablement porté à la température de 680° C, une poudre microcristalline de couleur vert clair a été obtenue. Le spectre de poudre est totalement différent de celui de la poudre noire précédente (Tableau II).

Le phénomène observé par A.T.D. correspond donc à une transformation allotropique. Nous appellerons α la variété dite "de basse température" de TeVO₄, celle "de haute température" est appelée β .

Phase Vitreuse: TeVO₄ γ

La trempe brutale du liquide, obtenue après fusion de TeVO₄, conduit à une masse lisse et homogène, de couleur foncée. Après broyage la

TABLEAU III

DONNÉES CRISTALLOGRAPHIQUES DE α -TeVO₄ et β -TeVO₄

	α-TeVO₄	β-TeVO₄
Symétrie	Monoclinique	Monoclinique
Paramètres	$a = 5.099 \pm 0.002 \text{ Å}$ $b = 4.934 \pm 0.002 \text{ Å}$ $c = 12.672 \pm 0.004 \text{ Å}$ $\beta = 105.85 \pm 0.05^{\circ}$	$a = 4.379 \pm 0.002 \text{ Å}$ $b = 13.502 \pm 0.004 \text{ Å}$ $c = 5.446 \pm 0.002$ $\beta = 91.72 \pm 0.05^{\circ}$
Groupe spatial	$P2_{1}/c$	$P2_1/c$
dexp	$\textbf{5.21} \pm \textbf{0.04}$	$\textbf{4.94} \pm \textbf{0.04}$
d_x	5.25	5.01
Ζ	4	4

TABLEAU II

INDEXATION DU SPECTRE X DE POUDRE DE β -TeVO₄

TABLEAU	Ľ	٧
---------	---	---

	$x(\sigma(x))$	y (σ(y))	$z\left(\sigma(z)\right)$	$B\left(\sigma(B)\right)(\mathrm{\AA}^2)$
Те	0.1086 (0.0005)	0.1940 (0.0005)	0.1675 (0.0002)	0.32 (0.03)
v	0.380 (0.001)	0.223 (0.001)	0.434 (0,004)	0.43 (0.08)
O ₁	0.379 (0.005)	0.033 (0.006)	0.068 (0.002)	0.81 (0.90)
0 ₂	0.253 (0.005)	0.943 (0.006)	0.485 (0.002)	0.98 (0.40)
0,	0.415 (0.006)	0.087 (0.007)	0.296 (0.002)	1.77 (0.40)
O₄	0.049 (0.005)	0.377 (0.006)	0.337 (0.002)	0.77 (0.40)

COORDONNÉES RÉDUITES DES ATOMES AVEC ÉCART TYPE DE «-TeVO4

poudre correspondante présente un spectre X totalement exempt de raies. Cette variété vitreuse de TeVO₄ est dénommée γ -TeVO₄.

Remarque. Si le liquide est chauffé à une température supérieure à 750°C, le phénomène d'oxydo-réduction précédemment signalé, et marqué par le départ de tellure élémentaire réapparait.

Obtention de Monocristaux

Variété α -TeVO₄

Une chauffe prolongée de α -TeVO₄ à 550°C en tube scellé conduit à la formation de beaux monocristaux de couleur noire également.

Variété β -TeVO₄

Deux méthodes ont été employées avec succès pour l'obtention de monocristaux:

- Fusion à 730°C, refroidissement lent (10° C/hr) jusqu'à 680°C, puis trempe brutale qui fige ainsi la structure de la variété haute température de TeVO₄;

— Par réaction de transport, le vecteur étant le chlorure de tellure TeCl₄.

Un tube scellé contenant TeVO₄ et TeCl₄ (10 mg de TeCl₄ pour un volume de 1 cm³) sont introduits dans un four régulé à 500°C.

Après 48 hr de chauffe on observe sur la partie "froide" du tube scellé la formation de très beaux cristaux de β -TeVO₄ de coloration vert émeraude; dans la partie "chaude" du tube se forment également de beaux cristaux noirs.

Etude Radiocristallographique

Phase α -TeVO₄

Les diagrammes de Laue établis pour un monocristal de α -TeVO₄ révèlent une symétrie

monoclinique. Les diagrammes de Bragg et de Weissenberg obtenus selon l'axe 0y du monocristal ont permis de préciser les paramètres a, b, c et β de la maille. Ils sont consignés au Tableau III. Une seule règle d'extinction a été relevée: pour les réflexions h0l, h = 2n. L'étude au goniomètre de précession d'un plan (0kl) a permis par ailleurs de relever une autre extinction affectant la rangée 0k0: k = 2n.

Le groupe spatial est donc : $P2_1/c$.

Le spectre X de poudre a été indexé (Tableau I) et les paramètres affinés (Tableau III).

TABLEAU V

Distances Interatomiques (en Å, Erreur Maximum \pm 0.03 Å) de $\alpha\text{-TeVO}_4$

$V_1 - V_2 = 2.83$ = 3.27	$Te-V_1 = 3.25$
$V_{1}-O_{11} = 1.96$ $V_{1}-O_{12} - 2.08$ $V_{1}-O_{2} = 1.73$ $V_{1}-O_{21} = 2.04$ $V_{1}-O_{3} = 1.92$ $V_{1}-O_{4} = 1.95$	$Te-O_{5} = 1.95$ $Te-O_{1} = 1.99$ $Te-O_{3} = 1.81$ $Te-O_{4} = 2.58$ $Te-O_{6} = 2.78$ $Te-O_{7} = 2.80$
$O_1 - O_3 = 2.86$ $O_1 - O_5 = 2.88$	$O_{11} - O_{21} = 2.58$ $O_{11} - O_4 = 2.93$
$O_3 - O_5 = 2.72$	$O_{11} - O_{12} = 2.39$
$O_3 - O_4 = 2.51$ $O_3 - O_2 = 2.84$	$O_2 - O_{12} = 2.30$ $O_2 - O_{21} = 2.51$
$O_2 - O_4 = 2.85$ $O_2 - O_{11} = 2.82$	$O_4 - O_{12} = 2.98$ $O_{11} - O_{12} = 2.96$
$O_2 - O_{21} = 2.83$	-21 -12

Angles de liaisons principaux O-Te-O de α -TeVO₄ (erreur maximum $\pm 1^{\circ}$)

 $O_1 - Te - O_3 = 98^{\circ}5$ $O_1 - Te - O_5 = 94^{\circ}0$ $O_3 - Te - O_5 = 92^{\circ}0$

TRANSITIONS IN $TeVO_4$

TABLEAU VI

h	k	1	FO	FC	h	k	l	FO	FC	h	k	l	FO	FC
0	0	2	35.7	-34.1	0	1	2	65.0	-71.1	3	1-	-10	110.7	111.4
0	0	4	74.0	-69.5	0	1	3	73.1	-80.8	3	1-	-14	83.1	-95.5
0	0	6	116.0	124.6	0	1	4	165.3	160.0	4	1	-1	59.7	-59.0
0	0	8	128.3	-135.1	0	1	6	33.9	30.3	4	1	-6	130.4	120.2
0	0	10	76.1	-71.4	0	1	8	95.1	-108.1	4	1	-7	53.8	-49.2
0	0	12	119.5	119.0	0	1	9	63.5	-62.4	4	1	-8	90.5	-79.6
1	0	2	166.6	-169.8	0	1	14	68.8	-81.0	4	1 -	-10	52.5	-47.8
1	0	4	87.6	96.9	1	1	2	30.2	-20.9	4	1 -	-12	54.7	53.9
1	0	6	141.4	138.6	1	1	3	63.6	-72.9	4	1 -	-13	36.4	-31.2
1	0	8	71.6	-75.2	1	1	4	74.5	82.7	4	1-	-14	61.9	-62.1
1	0	10	70.1	61.4	1	1	5	42.3	41.6	5	1	-4	129.1	-114.6
1	0	14	102.3	-111.9	1	1	6	100.9	-114.3	5	1 -	-10	82.1	-71.6
2	0	0	81.8	-90.0	1	1	8	67.3	66.5	5	1-	-12	80.1	72.0
2	0	2	109.0	-107.4	1	1	10	101.1	110.8	6	1	-1	30.9	31.5
2	0	4	76.9	82.6	1	1	12	72.4	-68.8	6	1	-2	78.2	68.8
2	0	6	117.7	116.7	2	1	2	174.8	179.9	6	1	-4	33.9	-35.6
2	0	10	107.3	107.9	2	1	6	110.5	-121.0	6	1	8	106.4	105.3
3	0	0	83.9	-77.7	2	1	8	63.7	62.4	0	2	2	34.8	42.7
3	0	2	134.4	148 9	2	1	12	49.9	-55.8	0	2	4	70.5	71.4
3	0	6	104.8	-107.6	3	1	2	92.3	86.1	0	2	5	48.2	43.6
3	0	8	33.9	38.8	3	1	4	86.0	-83.9	0	2	6	65.0	63.7
4	0	0	67.9	-63.0	3	1	6	59.2	59.2	0	2	7	74.2	-65.9
4	0	2	85.4	82.9	3	1	8	96.3	89.0	0	2	8	89.3	82.6
4	0	4	85.4	-77.1	3	1	9	42.3	41.1	0	2	10	63.4	58.9
4	0	8	124.7	128.9	3	1	10	84.1	-87.3	0	2	11	62.7	60.8
5	0	0	121.5	119.4	4	1	0	114.6	107.4	0	2	12	70.7	-78.8
5	0	4	100.9	-100.7	4	1	2	66.1	-59.0	0	2	13	26.0	-31.7
5	0	6	47.9	44.7	4	1	4	99.8	-89.7	1	2	1	46.7	-47.4
1	0 -	-4	196.2	-199.7	4	1	6	65.2	59.6	1	2	2	87.3	104.1
1	0 -	-6	93.9	93.7	5	1	0	72,3	68.4	1	2	3	85.6	86.4
1	0 -	-8	118.1	115.7	5	1	2	56.3	-50.2	1	2	4	101.2	-109.0
1	0-	10	94.4	-100.7	5	1	4	64.3	59.7	1	2	6	68.6	-72.1
1	0-	12	69.9	64.6	6	1	0	73.4	-71.7	1	2	7	64.9	-65.5
2	0 -	-2	131.2	145.9	1	1	-3	31.2	-36.7	1	2	8	73.8	76.0
2	0.	-8	79.2	86.5	l	1	-4	66.5	67.0	1	2	9	54.9	49.4
2	0-	10	/1.8	-/4.1	1	1	-6	44.0	-56.8	1	2	10	31.4	-32.1
2	0	12	/8.0	85.0	1	1	-/	58.2	01.1	2	2	2	53.1	61.5
3	0 -	-4	98.7	85.1	1	1	-8	114.3	125.0	2	2	3	/8.1	/5.1
2	0.	-0	103.3	109.3	1	1-	-12	100.2	-112.1	2	2	4	46.9	-42.1
3	0-	10	85.5	85.1	1	1-	-13	32.0	30.1	2	2	2	89.0	-91.5
3	0	14	58.9 69.6	-59.2	1	1-	-14	34.7	38.9	2	2	6	84.7	/9.3 EC A
3	0-	14 ว	00.0	02.7	2	1	-3	30.3 49.0	23.0	2	2	10	01.0	20.4
4	0.		117.7	-114.9	2	1	-5	48.0	-33.1	2	2	10	92.5	-102.3
4	0.	-4	129.4	20.8	2	1	-0	13.0	-72.0	2	2	11	39.7 04.5	-04.1
4 1	0.		47.5	-37.0	2	1	-y 10	44.9 71 6	37.4 85 1	2 2	2	1	94.3 114.0	00.2
4	0	14	100.0	102.0	2	1-	12	62.2	77 2	2	2	4	62 4	-105.5
4	0-	6	109.9 5 0.1	-102.0 57.7	∠ 2	1-	-12	31 0	-12.5	2	2	4	02.4 63.4	-59.2
5	0 -	-8	138 6	_136.3	2	1		170.8	∠2.0 171 0	2	2	5	820	-50.2 60 5
5	0	12	577	55 7	2	1	_2	47 3	<u> </u>	2	2	7	02.0 57 0	57 K
6	0	10	67.9	56.6	2	1	4	737	65 9	2	2	8	40.3	-37.0
ñ	1	1	24 3	22.9	3	1		68.8	68.2	2 2	2	્ય	40.5	-40 G
v	•	•	1.5		5		0	00.0	50.2	Ŧ	2	5	77.1	10.0

MEUNIER, DARRIET, ET GALY

TABLEAU VI-continued

h	k l	FO	FC	h	k	l	FO	FC	h	k	l	FO	FC
4	2 5	28.6	28.2	1	3	3	49.3	52.0	3	3	-1	74.0	82.8
5	2 0	71.9	-76.2	1	3	5	84.1	-86.6	3	3	2	77.2	86.1
5	2 4	85.8	79.0	1	3	6	48.6	49.4	3	3	-3	88.0	95.0
1	2 -1	53.8	-55.9	1	3	7	68.0	70.9	3	3	-9	85.3	-89.8
1	2 -3	55.1	65.8	1	3	9	43.5	43.8	3	3-	-10	68.6	-65.8
1	2 -5	75.6	-86.1	1	3	10	65.4	-67.9	3	3-	-11	21.5	24.1
1	2 -6	50.3	-50.2	1	3	11	81.9	84.3	3	3-	-12	25.3	-22.6
1	2 -8	76.2	-81.7	2	3	1	101.2	98.1	3	3-	-13	60.4	60.3
1	2 -9	77.0	72.7	2	3	2	73.4	-73,9	4	3	-6	56.3	-62.3
1	2 - 11	44.8	-47.5	2	3	3	71.8	-67.3	4	3-	-11	47.6	-58.8
1	2-12	52.8	-59.0	2	3	6	67.1	62.1	5	3	-3	84.5	74.7
2	2 -3	73.6	83.5	2	3	7	85.4	78.7	5	3	-4	87.3	78.6
2	2 -4	36.0	-39.1	2	3	9	49.8	-44.7	5	3	-5	86.0	-75.8
2	26	31.6	25.6	2	3	10	32.8	30.0	0	4	2	22.5	26.7
2	27	63.3	-61.2	3	3	0	16.5	-13.0	0	4	3	21.3	22.7
2	2 - 8	76.2	-87.2	3	3	1	47.6	37.8	0	4	5	65.2	72.2
2	2 -9	63.4	68.3	3	3	3	83.0	70.7	0	4	7	86.3	94.7
2	2-10	72.5	69.4	3	3	5	73.3	66.4	0	4	8	38.6	-33.1
2	2-12	72.6	77.7	3	3	6	67.3	-50.7	1	4	1	57.6	62.1
2	2-13	55.3	-62.4	3	3	8	42.3	-39.7	1	4	2	26.8	-26.6
2	2-14	56.6	-55.6	3	3	9	88.8	-79.8	1	4	3	118.7	-131.6
3	2 -1	47.2	-44.6	4	3	0	60.5	-51.3	1	4	4	42.0	39.3
3	2 - 5	99.6	99.7	4	3	1	106.7	-94.7	1	4	/	93.0	83.3
3	2 -0	114.7	126.9	4	3	2	49.4	36.2	1	4	9	/1.1	-68.3
3	2 - 7	/8.8	-/0.9	4	3	4	/5.0	01.4 70.0	2	4	0	24.5	-19.3
3	2 - 10	63.2 52.1	-66.4	4	3	5	82.7	/9.9 20.6	2	4	5	/1.1	-63.0
2	2~11	23.1	33.Z	4	2	0	20.4	-30.0	2	4	2 6	19.2	/1./
2	2 - 12	49.7	43.0	5	2	0	40.3	-30.0	2	4	07	37.0 57.7	-27.4
2	2 - 13 2 14	36.7	-33.3	J 1	2	2	29.0	20.5	2	4	2	32.7	-43.2
3	2^{-14}	101.0	-30.7	1	2	-2	22.7	-49.0	2	4	5	02.9	95.0
4	2 2	87.5	77.8	1	3-	-3 1	33.2	-33.6	_1	4	0	23.0 23.7	- 25 5
4	2 -3 2 -4	102.0	-12.0	1	3-		54.1 54.4	-55.0	_1	4	1	23.7	-25.5
4	2 - 4 2 - 10	81.9	-05.0 -76.9	1	3 -	-6	29.7	29.4	-1	4	_3	86.8	-101.0
4	2 - 10 2 - 11	47 A	48.0	1	3_	_7	29.3 71 7	-80.7	1	4	-5	101.0	105.7
5	2 -1	723	57.8	1	3 -	-8	50.2	-61.6	1	4	-8	38.7	34.1
5	2 4	29.5	-27.8	1	3 -	_9	63 5	70.1	1	4	_9	70.9	74 7
5	$\frac{2}{2} - 6$	57.6	-58.6	1	3-1	ú	52.3	52.5	2	4	-1	118.6	129.7
5	2 -7	56.0	59.3	i	3-1	12	66.6	70.2	2	4	-2	43.4	42.8
5	2 -8	67.0	82.8	1	3-1	13	70.1	-78.5	2	4	-3	75.0	-68.8
5	2 -9	35.5	-35.5	2	3 -	-2	29.5	-26.9	2	4	-5	37.2	-31.2
0	3 4	108.2	-125.9	2	3 -	-3	42.9	-43.5	2	4	-7	75.6	72.9
0	3 5	76.3	-79.3	2	3	-4	40.0	-37.6	2	4	-9	83.2	-91.4
0	37	72.0	-82.1	2	3 -	5	105.4	110.5	2	4-	-10	26.8	-24.2
0	38	48.0	48.3	2	3 -	-6	49.7	59.0	3	4	-1	51.9	54.5
0	39	70.5	73.5	2	3 -	-8	24.1	23.9	3	4	-5	72.5	-81.2
0	3 11	55.5	-50.1	2	3 -	-9	54.8	-54.8	3	4	6	42.1	-41.9
0	3 12	28.3	26.8	2	3-1	1	66.4	69.8	3	4	-7	78.3	85.4
1	31	36.9	38.3	2	3-1	13	31.1	-37.5	3	4	9	43.2	44.3
1	3 2	52.1	57.0										

La densité mesurée au pycnomètre dans l'orthophthalate de diéthyle est: $d_{exp} = 5.21 \pm 0.04$. Elle est en bon accord avec la densité calculée ($d_x = 5.25$) pour quatre motifs TeVO₄ par maille.

Phase β -TeVO₄

Une étude analogue a été effectuée sur un monocristal de la phase β -TeVO₄. L'ensemble des données cristallographiques est groupé au Tableau III. Elles permettent d'indexer parfaitement le spectre de poudre de β -TeVO₄ (Tableau II).

On notera que le groupe spatial est identique pour les deux variétés α et β de TeVO₄; les différences sensibles qui existent entre les paramètres des mailles cristallines laissent cependant présager des structures très différentes pour les deux variétés allotropiques.

Structure Cristalline de TeVO₄ α

Determination de la Structure

Le monocristal sélectionné pour l'étude structurale est un petit prisme noir de $0.05 \times 0.10 \times$ 0.15 mm. La radiation utilisée était celle d'une anticathode de cuivre (CuK α).

A l'aide d'une chambre de Weissenberg intégrante (technique des films multiples) 304 réflexions *hkl* ont été collectées. Les intensités des taches mesurées par comparaison avec une échelle photographique ont été corrigées du facteur de Lorentz polarisation.

La structure a été determinée par déconvolution de la fonction de Patterson et affinée par une méthode de moindres carrés.

Le facteur de reliabilité final est satisfaisant: R = 0.077.

Les coordonnées réduites des atomes et les distances interatomiques sont données aux tableaux IV et V.

Les facteurs de structures observés et calculés sont comparés au tableau VI.

Description de la Structure

La projection de la structure sur le plan (010) est donnée à la figure 2.

Le vanadium occupe un site octaédrique déformé. Les octaèdres VO₆ liés par l'intermédaire d'arêtes communes forment une chaîne en zig-zag parallèle à l'axe 0y et de formule $(VO_4)_n^{4n-}$. Un schéma de cette chaîne est donné à la figure 3.

Le tellure et trois oxygèles occupent les

sommets d'une pyramide à base triangulaire; les trois atomes d'oxygène formant le plan de base, appartiennent chacun à des chaînes $(VO_4)_n^{4n-}$ différentes. Le tellure avec sa coordinence 3 assure donc la cohésion de la maille en reliant les chaînes entre elles.

Discussion

La coordinence 3 du tellure +IV est analogue à celle rencontrée dans la teneite (8), la deningite (9, 10), dans le tellurite naturel (Zn, Fe)₂[TeO₃]₃ Na_xH_{2-x}·yH₂O (11), dans la rodalquilarite (12) et dans ZnTeO₃ (13). La distance Te-O moyenne est de 1.92 Å.

Cette coordinence du tellure est cependant assez rare dans les composés de synthèse, la coordinence quatre, avec quatre atomes d'oxygène situés d'un même côté, étant plus fréquente: TeO_2 (paratellurite) (4), $TiTe_3O_8$ (5), UTe_3O_9 (14), $Zn_2Te_3O_8$ (3), NaVTeO₅ (15).

Les distances interatomiques V–O sont comprises entre 1.92 et 2.08 Å, avec cependant une distance nettement plus courte V–O₂ = 1.73 Å. La distorsion de la chaîne entraîne des distances V–V alternativement égales à 2.83 et 3.27 Å.

L'oxyde double TeVO₄ présente donc deux variétés allotropiques. La variété basse température α cristallise avec une structure particulièrement originale. La transformation allotropique de TeVO₄ impliquait une étude structurale approfondie des deux variétés, celle de β -TeVO₄ fera l'objet d'un prochain mémoire.

Les propriétés de transport électronique sont en cours d'étude.

Bibliographie

1. J. GALY ET G. MEUNIER, C.R. Acad. Sci. 268, 1249 (1969).

- 2. G. MEUNIER ET J. GALY, C.R. Acad. Sci. 270, 1987 (1970).
- 3. J. DARRIET, G. GUILLAUME, ET J. GALY, C.R. Acad. Sci. 269, 23 (1969).
- 4. G. MEUNIER ET J. GALY, Acta Crystallogr. **B27**, 602 (1971).
- 5. J. GALY ET G. MEUNIER, Acta Crystallogr. **B27**, 608 (1971).
- B. FRIT, M. JAYMES, G. PEREZ, ET P. HAGENMULLER, Rev. Chim. Mineral. 8, 453 (1971).
- 7. G. PEREZ, F. LASSERRE, J. MORET, ET B. FRIT, C.R. Acad. Sci. 272, 77 (1971).
- 8. A. ZEMANN ET J. ZEMANN, Acta Crystallogr. 15, 698 (1962).
- 9. E. M. WALITZI, Naturwissenschaften 51, 334 (1964).
- E. M. WALITZI, Tschermaks Mineral Petrogr. Mitt. 10, 241 (1965).
- 11. E. MATZAT, Tschermaks Mineral Petrogr. Mitt. 12, 108 (1967).
- 12. Y. DUSAUSOY ET J. PROTAS, C.R. Acad. Sci. 266, 91 (1968).
- 13. K. HANKE, Naturwissenschaften 54, 199 (1967).
- 14. K. HANKE, Naturwissenschaften 53, 273 (1966).
- 15. J. DARRIET, G. GUILLAUME, K. A. WILHELMI, ET J. GALY, Acta Chem. Scand. (in press).